
1
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

To: IEEE P1619.3 Task Group 1
From: P1619.3 [subgroup or ad hoc committee], Members: 2

[Subhash Sankuratripati, NetApp] 3

[Ravi Kavuri, NetApp] 4

[Gaurav Agarwal, NetApp] 5

[Scott Kipp, Brocade] 6

[Landon Noll, Cisco] 7

[Kevin Marks, Dell] 8

[Jon Hass, Dell] 9

[Larry Hofer, Emulex] 10

[Glen Jaquette, IBM] 11

[Walt Hubis, LSI] 12

[Matthew Ball, MV Ball Consulting] 13

[Robert A. (Bob) Lockhart, nCipher] 14

[Jon Holdman, Sun] 15

[Luther Martin, Voltage Security] 16

[Michael Marcil, Vormetric] 17

Date: July 23, 2008 18
Purpose: Proposed changes against P1619.3/D3 to incorporate [Add Sections 4, 5 & 6 into the draft._] 19
[NOTE: Draft number proposed against should replace red x] 20

Introduction 21

The P1619.3 [subgroup or ad hoc committee] has been working on a proposal to create [Fill in an overview of what 22
the committee is proposing]. 23
 24
[Please delete anything between brackets (including the brackets) and replace with the appropriate proposals] 25
 26
[Rules and Guidance 27

a) Diagrams can be submitted in color or grayscale. You may be asked to convert it if time is not on the 28
editor’s side at the moment. 29

b) All [black bracketed] text should be replaced with the appropriate information. 30
i) Note please delete this bullet completely. The format of the text is there for example purposes. 31

c) All text in dark red italics should be cut out of a document prior to submission (includes this entire 32
section with numbering). 33

d) If you have verbiage or information that belongs in a section that Bob L. did not include you as creating, 34
ignore Bob L.(this once only) and create away! 35

2
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

e) All dates that must be updated are automatically updated as you open & save the document. You should 1
replace them with fixed dates for proposal and tracking purposes. 2

f) If you are not running a PC with Windows using Word, do not enable the macros. You should also avoid 3
deleting them. Any documents that have to be cut and pasted back into a good macro document will cost 4
you $25 to be put towards the WTSS subgroup (see P1619.3 meeting minutes dated September 17 2007). 5

g) Bob Lockhart will be participating off and on in all subgroups to monitor progress and assist with the 6
documents as needed.] 7

Changes to P1619.3/D3 8

[Change the red x to the appropriate draft number] 9

[Note any sections that are to be completely removed from the existing document.] 10
[Note sections that contain changes if the section is not to be fully deleted.] 11

1. Normative References 12

[Include any normative references in this section] 13

2. Definitions, acronyms, and abbreviations 14

For the purposes of this proposal, the following terms and definitions apply. The Authoritative Dictionary of IEEE 15
Standards, Seventh Edition, should be referenced for terms not defined in this clause. 16

 17

[Ensure that definitions, acronyms and abbreviations do not already exist in the above reference] 18

2.1 Definitions 19

[2.1.i)term1: select the ‘definitions’ and select ‘format terms and definitions’ in the IEEEStdsTemplate tool bar. If 20
you do not have macro enabled please enter the number manually.] 21

2.2 Acronyms and abbreviations 22

[LAH List Acronyms (and/or abbreviations) Here] 23
 24
[I have to manually edit the numbers here so just use standard body text formatting.] 25

3. General Overview 26

[Place any overview information as it pertains to the proposal in this section. Use section numbers appropriately. 27
The editor reserves the right to move information from any section to a more appropriate section based on 28
workgroup feedback] 29
[Architecture and Name Space belong in this section] 30
[We may need to move some or all of Name Space to section 5 or give it a separate section] 31

Formatted: IEEEStds
DefTerms+Numbers, Font: Italic,
Font color: Red, Do not check spelling
or grammar

Deleted: 2.1

3
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4. Key Management Objects 1

This section describes KM objects as they are transmitted across the wire to a KM client. Attributes that are 2
‘persistent’ across clients are listed in ‘bold font’. Attributes that are ‘optional’ are listed in ‘italicized font’. 3

4.1 Key 4

Scope: Client & Server. 5

The Key object consists of the key blob (potentially wrapped) along its meta-data. 6

4.1.1 Attributes 7

A key object distributed by a KMS contains the following attributes: 8

 KEY_ID (Type: SO_GUID) 9
 FRIENDLY_NAME (Optional: Type:String) Not necessarily unique within a KMS as additional 10

attributes may be used to make a unique reference. 11
Note: It should be possible to request a key by its Friendly_name (plus additional reference attributes if 12
needed), and this may be used to hold prior key names for legacy key applications. 13
 14

 STATE (Type:String) EDITORIAL: Reference back to the relevant section. 15
 T_EXPIRED (Type: UTC - time beyond which the key should not be used to encrypt new data) 16
 T_DISABLED (Type: UTC - time beyond which the key should be used) 17
 T_CACHED (Type: 64-bits – seconds that the key may be cached for. This may be differentiated by 18

endpoint) 19
 CIPHER_TYPE (Type:String OID – TODO: Insert) 20
 KEY_BLOB (Object as defined in the next section) (This may be differentiated by endpoint, and is 21

constructed from an immutable key value, the storage and representationof which is outside of this standard) 22
 VENDOR_SPECIFIC_EXTENSIONS 23
 APPLICATION_EXTENSIONS 24
 CACHING_POLICY 25
 (VERSIONING_INFORMATION:) 26

Narrative: A KMS shall represent versioning of Key objects using two values: Version, which is an 27
incrementally increasing value, representing changes to Key attributes, including changes to policies 28
referenced by the key, and a GMT dateTime value representing the time of the last change. 29
KMS_Clients may treat the combination as an opaque token, or use the values to protect against 30
updates of stale copies. KMS servers may construct these values customized to the requestor, or 31
maintain them globally independent of the endpoints. (for example, if a policy for a key changes, but 32
that change is not relevant for an endpoint, the KMS may or may not represent update the 33
versioning_Information. Versioning information will not change due to auditing activity, reference, 34
inclusive Realm_Associations or backup. 35

 VERSION (Type: unsigned Numeric) 36
(NOTE: It must be possible for an endpoint to request key object if altered since a reference version) 37

 EDIT_DATETIME (TYPE: DATETIME) 38
(NOTE: It must be possible for an endpoint to request a list of key objects altered since a reference 39
time) 40

Comment [MM1]: note to bob: put
this note into referenced section

4
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1
In addition, a KMS must be capable of representing the following attributes and references: 2

 REALM_ASSOCIATIONS 3
(Note: keys will not be delivered to endpoints without compatable Realm rights) 4

 WRAPPING_POLICY 5
 DESCRIPTION (Type:String) 6
 ATTRIBUTE_ASSOCIATIONS 7

(A list of named value pairs useable as an alternate mechanism to define or reference a key . Keys can 8
be retrieved by their key_ID or alternatively by an ANDED match on these NVPs) 9

 10

In addition, a KMS must be capable of representing the following associations: 11

 USE_BY_CLIENTS 12
(Note: does not alterVersioning_Information for a key itself. Note since any given key may be used by 13
multiple clients or CUs, this tracking must be maintained, so the KMS is capable of initiating 14
unsolicited updates to a KMS_Client when a key’s attributes or policies change) 15

 USE_BY_CUS (see above note) 16

4.1.2 States 17

As defined in the key state diagram (Editorial: as defined by the architecture sub-committee) 18

4.1.3 Operations 19

 Create 20
 Get 21
 Store 22

Comment [MM2]: source removed.
my misreading of the nist spec

Deleted: <#>SOURCE ¶
Represents the identity of the originator
of the key value. (a specificKMS, a
specific client, a specific PEP)¶

Deleted: PEP

Deleted: PEP

5
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.2 Key Blob 1

4.2.1 Attributes 2

 ProtocolVersion (Type:int and defined as 1 for this version of the standard – This attribute will be 3
remain constant for all clients for this version of the standard.). 4

 WRAPPING_TYPE (Type:String) – and can take any of the values as listed in the key wrapping 5
section. 6

 Length (Type:int) 7
 Data (Type: Character Array) 8
Editorial: CMS will be used to wrap keys. The updates necessary to add key wrapping will be done at a later 9

point. 10

6
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.3 Key_Template 1

Scope: Client & Server. 2

The Key_Template object consists of attributes and policies which may be inherited when creating a key (either by 3
the KMS Admin, or by a key request). It does not represent any actual key. 4

It should be possible to make a key creation request “byTemplate”, with or without additional dataset bindings. It is 5
not possible to make a key retrieval request “byTemplate” without distinguishing dataset bindings. 6

Discussion: I suppose one could think of “template” as an additional “dataset binding” and use the same service as 7
previously envisioned. The important notion here is the ability to predefine all the policy and attributes into some 8
template to avoid having to manage all this separately. 9

4.3.1 Attributes 10

A Key_Template object defined within a KMS contains the following attributes: 11

 KEY_TEMPLATE_ID (Type: SO_GUID) 12
 FRIENDLY_NAME (Optional: Type:String) Unique within a KMS 13

Note: It should be possible to request a key creation by template using its Friendly_name 14
 CIPHER_TYPE (Type:String OID – TODO: Insert) 15
 VENDOR_SPECIFIC_EXTENSIONS 16
 APPLICATION_EXTENSIONS 17
 CACHING_POLICY 18
 (VERSIONING_INFORMATION:) 19

 VERSION (Type: unsigned Numeric) 20
 EDIT_DATETIME (TYPE: DATETIME) 21

 REALM_ASSOCIATIONS 22
 WRAPPING_POLICY 23
 DESCRIPTION (Type:String) 24

7
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.4 ENDPOINT_TYPE 1

Endpoint_Type is an object to simplify the need to exchange capabilities between a KMS_CLIENT or CU and a 2
KMS_SERVER, as well as managing a collection of capabilities at the Server. (Discussion point: It would be 3
desirable if these values were standardized in some registry.) An Endpoint_Type will always equate to a 4
deterministic set of capabilities, though the converse need not be true. During registration, KMS_Clients or CUs 5
will present identifying information that will allow a KMS_Server to map it to an Endpoint_Type. 6

4.4.1 Attributes 7

 ENDPOINT_TYPE_ID (Type:TBD) 8
 CAPABILITIES (Note: common registry should allow retrieval of such characteristics as has-9

certificate, understands-time, min and max keyID lengths, never-exposes-key, hasHSM, etc.) 10

Deleted: PEP

Deleted: PEP

8
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.5 REALM (optional) 1

Realms are used to segment objects into separate administrative domains. 2

Administrative users and endpoints requesting key services will have “RealmAssociations” which will allow many 3
to many representations specifying differing rights. For example, a policy may be deleted by an administrator 4
belonging to a realm which also has delete capabilities on the policy, while an administrator in a realm with only 5
read rights may use the policy, but can not delete or edit it. While a KMS may implement administrative “Roles”, 6
Realms allow segmentation based on data characteristics rather than functional capabilities. 7

When a KMS provides Realm support, the KMS must insure no object is assessable unless the requesting endpoint 8
or administrator has been properly associated with an incorporating realm that allows the access. Realms must 9
allow the following distinctions: create, edit, delete, read, reference (use but not view). The most privileged right 10
from any associated realm may be use to determine an access. 11

 12

4.5.1 Attributes 13

 REALM_ID (Type tbd; where domain is a string that is in compliance with DNS name as defined by 14
RFC 1034. 15

 DESCRIPTION 16

Comment [MM3]: may be an
so_guid, with Realm being a Object type.
bob to elaborate

Deleted: :Realm://domain/realm-name

9
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.6 CU (Policy Enforcement Point / Cryptographic Unit) 1

Scope: Client & Server 2

Narrative: While there is no direct communication with a CU, there will be certain end points which may want to 3
present an identity to the KM Server, so key information can be conveyed in a secure and predictable manner to the 4
CU. 5

4.6.1 Attributes 6

 CU_ID (Type:SO_GUID) 7
 Array of Name, Value pairs. 8
NOTE: The name of the attributes that are part of the CU object shall follow the following convention: 9
CU://domain/context/attribute-name where domain is a string that is in compliance with DNS name as defined by 10

RFC 1034. 11
In addition – the following domin/context combination – ieee.org/siswg/ is reserved for use by this standard. 12
 REALM_ASSOCIATIONS (Server Only) 13
 ENDPOINT_TYPE_ID (TYPE:TBD Server Only.) 14

DiscussionPoint: Prefer this to be some IEEE registry. note: KMS Clients shall provide a 15
CIM_PhysicalElement or CIM_SoftwareIdentity object upon registration of a CU, which will allow a 16
KMS to map an entity to a TYPE_ID. Or perhaps we define a new CIM object derived from common 17
ones to include capabilities we want that may not be determined by attributes in the mentioned CIM 18
objects. 19

 CLIENT_ASSOCIATIONS (Server Only) 20
 Note this might be done with a Client_Group. A CU will initially be associated with full rights 21
granted to its registering Client. Other behaviors to manage associations is outside the scope of this 22
spec., but a KMS must be capable of conforming to a policy or configuration that prevents a CU from 23
receiving its key from an “unauthorized” client. This can easily be accomplished by restricting access 24
to keys both to authorized KMS clients and authorized CUs.) 25

 AUTHENTICATION_POLICY 26
 AUTHENTICATION_VALUES (It must be possible for a CU to authenticate to the KMS through an 27

untrusted KMS_CLIENT) 28
 List of {CREDENTIAL_LENGTH,CREDENTIAL_VALUE} tuples. 29
 WRAPPING_POLICY. (Note: this may typically be inherited via endpoint_type_id) 30
 WRAPPING_VALUES (Since CUs can uniquely protect some wrapping values, such as private keys, 31

data can pass through a KMS_Client without exposure) 32

Formatted: Strikethrough

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: pep

Comment [MM4]: Some prefer to
avoid a registry. We will try to define
initial types within this spec; If we iterate
the list of capabilities to be defined, we
can always create types to match their
various combinations.

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

10
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.7 Client 1

Scope: Client & Server. 2

The client object consists of its credentials and capabilities. 3

4.7.1 Attributes 4

 CREDENTIAL_TYPE (Session, Username/Password, Symmetric / Asymmetric key, SSO, CHAP) 5
 List of {CREDENTIAL_LENGTH,CREDENTIAL_VALUE} tuples. 6
 REALM_ASSOCIATIONS 7
 ENDPOINT_TYPE_ID 8
 WRAPPING_POLICY 9
 10

4.7.2 States 11

 Active 12
 Disabled/Locked 13
 Authenticated 14

4.7.3 Operations 15

 Create 16
 Delete 17
 Authenticate 18
 Disable 19

NOTE: All of these operations with the exception of authenticate are performed by way of KM Console operations 20
and are outside the scope of the standard. 21

11
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.8 Capability 1

4.8.1 Attributes 2

 Name (Type: String) 3
 Supports AES 128 4
 Supports AES 256 5
 Supports 3DES 6
 Understands Relative time (elapsed time) 7
 Understands Universal time 8
 Includes HSM 9
 Includes TPM- 10
 Has Cert 11
 Has PKI key pair 12
 min and max keyID lengths 13
 never-exposes-key 14
 is client-cu Hardware combo 15
 is_Kernel Software 16
 is User Space Software 17
 is Hardware 18
 Utilizes Host for Crypto 19
 can Persistently Cache keys 20
 Offers api to provide key in clear 21
 .. and more tbd 22

4.8.2 States 23

None. 24

4.8.3 Operations 25

No direct operations. The capability object is sent as part of the capability negotiation operation, or constructible by 26
reference to an endpoint type 27

Formatted: Bullets and Numbering

Comment [MM5]: throwing some out
for straw man starting point.

12
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

 1

13
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.9 Data Sets 1

Scope: Client, CU & Server. 2

Data sets represent manageable units of encrypted data. Data sets are expressed as selection rules that can be applied 3
to data set attributes such as file path, tape volume id, server IP, or a range of disk blocks. There should be flexibility 4
in defining what a data set is, depending on the position of the encryption agent "in the stack" of the storage 5
infrastructure. 6

Once the data sets are identified, keys may be associated to data sets via a key assignment policy. 7

4.9.1 Attributes 8

 NAME 9
 VALUE 10
 SIZEOF_VALUE 11

Deleted: PEP

14
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.10 Client Groups 1

Scope: Server only. 2

Clients may be grouped together for ease of management. This grouping may be static – i.e. clients are explicitly 3
added into a group or dynamic i.e. based on a regular expression match on client attributes. 4

4.10.1 Attributes 5

 TYPE (STATIC or DYNAMIC) 6
 List of CLIENT_SO_GUIDs (only in case of static binding) 7
 List of {PATTERN, ATTRIBUTE} tuple. 8
 REALM_ASSOCIATIONS 9
 10

15
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

4.11 Key Groups 1

Scope: Server only. 2

Keys may be grouped together for ease of management. This grouping may be static – i.e. explicitly added into a 3
group or dynamic i.e. based on a regular expression match on dataset attributes. 4

4.11.1 Attributes 5

 TYPE (STATIC or DYNAMIC) 6
 List of CLIENT_SO_GUIDs (only in case of static binding) 7
 List of {PATTERN, DATASET} tuple. 8
 REALM_ASSOCIATIONS 9
 10

16
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5. Key Management Policies 1

A policy is a deliberate plan of action to guide decisions and achieve rational outcome(s).. In the same vein, Key 2
Management Policies are used to guide assignment, retention, wrapping, replication & access control decisions on 3
keys. 4

The scope of some policy objects will extend to an endpoint. 5

5.1 Key Assignment Policy 6

Key Assignment Policies contain logic that is able to determine which data set should be encrypted with which key 7
using which algorithm (e.g. encrypt and sign all emails sent outside of the company. Sign all tapes with a unique key 8
per tape, etc.) 9

A key assignment policy determines 10

 the type of unencrypted data that is determined to be encrypted with a specific key. 11
 how often to generate new keys 12

 13

Therefore, the key assignment policy encapsulates both key generation and key scope policies. This is done to fit 14
regular usage patterns. For example, when a tape is loaded into a drive, the drive will request a key by data, and will 15
receive both a key that may be used on that drive, as well as a policy notifying the drive whether all tapes should be 16
encrypted with this key, or only the current tape. 17

The key assignment policy is determined by the set of supported data set attributes, and is encoded as a set of name, 18
value pairs. 19

The policy is interpreted to mean that the key may be used whenever all the named parameters have values equal to 20
the values of the data presented to the client. So, for example, in the following encryption policy: 21

container attribute name = ”storage_server_name” value=”Ireland.com” 22

data attribute name = ”financial” 23

The provided key may be used to encrypt all of the data tagged as “financial” on the storage server named 24
“Ireland.com” with the key listed in the KeyExchangeStructure. 25

Note that there is a difference between a data set binding and an assignment policy, and the KMS must track both. 26
An organization may set a policy to encrypt a pool with a specific key, but due to key rotation policies, not all tapes 27
within the pool will have been encrypted with that key. Therefore, assignment policies specify the current desired 28
behavior, whereas the KMS will store all data set bindings that are reported to it, for future audit and key query 29
commands. State logic within the KMS may allow for the automatic creation of key assignment policies based on 30
the “most recent” data set binding. 31

5.1.1 Attributes 32

 KEY_ASSIGNMENT_POLICY_ID 33
 DESCRIPTION 34
 REALM_ASSOCIATIONS 35

 36

17
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5.2 Retention Policy 1

5.2.1 Overview 2

The retention policy dictates the duration for which protected data, hence the key with which it is encrypted, is 3
accessible to a given client. It also dictates when new data should no longer be encrypted with a given key. 4

This policy should be superseded by the key life cycle. 5

 6

5.2.2 Attributes 7

 RETENTION _POLICY_ID 8
 DESCRIPTION 9
 REALM_ASSOCIATIONS 10
 T_EXPIRATION 11
 T_DISABLE 12

5.2.3 States 13

 Created 14
 Assigned 15
 Enforcing 16
 Disabled 17

5.2.4 Operations 18

 Add 19
 Associate 20
 Disassociate 21
 Delete 22

18
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5.3 Wrapping Policy 1

The wrapping policy indicates whether a key should be wrapped prior to being dispatched to a client. This policy 2
may be referenced from the key object, ?a key_group?, a client object, ?a ClientGroup?, a CU object, or a 3
Endpoint_type. If multiple policies are defined then the order of precedence shall be per the following: 4

1. Key shall prevail over KeyGroup 5

2. Key or KeyGroup shall prevail over CU 6

3. CU shall prevail over CU’s Endpoint_Type 7

4. Client shall prevail over Client’s Endpoint_Type 8

5. If both a CU and Client specify (or inherit) a Wrapping Policy, the key will be double wrapped, first by 9
policy prevailing for the CU, then by prevailing ClientPolicy. The KMS_Client will unwrap the key and 10
pass the wrapped Client_Key for subsequent unwrapping. 11

5.3.1 Attributes 12

 WRAPPING_TYPE (asymmetric / symmetric / signature) 13
 WRAPPING_MODE (as listed in the key blob section) 14

 15

5.3.2 States 16

 Created 17
 Assigned 18
 Enforcing 19
 Disabled 20

5.3.3 Operations 21

 Add 22
 Associate 23
 Disassociate 24
 Delete 25

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: Pep

Deleted: PEP

Deleted: PEP

19
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5.4 Audit Policy 1

Audit policies state the auditing requirements that need to be enforced on keys and clients. 2

TODO: Bob Lockhart to provide new content. 3

5.4.1 Attributes 4

 Operation type 5
 Event type (to trigger, Log, SNMP trap, etc.) Mandatory: Log 6
 Event Dispatch Destination (Local, SNMP, syslog) Mandatory: Local, syslog. 7

NOTE: The only mandatory type that should be supported is ‘log’ and the mandatory dispatch destinations are local 8
and syslog. 9

5.4.2 States 10

 Created 11
 Assigned 12
 Enforcing 13
 Disabled 14

5.4.3 Operations 15

 Add 16
 Associate 17
 Disassociate 18
 Delete 19

 20
 21

20
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5.5 Access/Distribution Policy 1

Key access policies encode which clients and key management servers may access which keys. This may be 2
controlled by the clients or CUs, as a key creation request may set the data set bindings of a key, but it is enforced 3
by the KMS, which lookup tables storing keys to data assignments, and clients to data permissions, always enforcing 4
any realm restrictions. 5

In addition, the KMS administrator for a key’s realm may alter a key’s access and distribution policy. 6

This policy is referenced by a key or key group. 7

Note: this policy governs what endpoints MAY receive a key, but can not be used to determine which endpoints in 8
fact received any given key. 9

5.5.1 Attributes 10

 SO_GUID 11
 Client or clientGroup list 12
 CU list 13
 KM server list. 14
 REALM_ASSOCIATIONS 15

5.5.2 States 16

 Created 17
 Assigned 18
 Enforcing 19
 Disabled 20

5.5.3 Operations 21

 Add 22
 Associate 23
 Disassociate 24
 Delete 25

Deleted: PEP

Deleted: PEP

21
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5.6 Caching Policy 1

The key caching policy dictates whether a key shall be cached by a KM client and if so, the duration for which it 2
can. 3

Attributes 4

 CACHING_TYPE, T_CACHE_INTERVAL tuples (list) 5
Note: It should be possible to allow different time intervals for caching depending on the security of the caching 6
along different attributes such as HSM, TPM, neverExposedHardware, 7

5.6.1 States 8

 Created 9
 Assigned 10
 Enforcing 11
 Disabled 12

5.6.2 Operations 13

 Add 14
 Associate 15
 Disassociate 16
 Delete 17

22
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6. Key Management Operations 1

6.1 Register Endpoint 2

Scope: KMCS Ops, including registration for KMS_Client or CU 3

Editorial comment We need to fill this operation out. e.g. Identify who is registering, type and/or capabilities, how 4
authenticate, certs, etc. send cim object 5

6.2 Authenticate 6

Scope: KMCS 7

6.2.1 Overview 8

A client needs to authenticate with the KM server to perform any sensitive operations. Authentication is 9
accomplished either at the transport level (SSL/TLS) or at the object/messaging level. Every request shall contain 10
the “credential” object so that the KM server can validate the client. 11

6.2.2 Input / Output / Error 12

 (I): Client 13
 (O): Credentials (If the request type is login and not validation) 14
 (E): E_INVALID_CREDENTIALS 15
 (E): E_UNSUPPORTED_AUTHENTICATION_MODE 16

 17

6.3 Capability Negotiation 18

Scope: KMCS 19

6.3.1 Overview 20

The client sends its capabilities to the server and the server returns back a list of capabilities it supports. If none of 21
the capabilities are supported, then it returns back an empty list. 22

6.3.2 Input / Output / Error 23

 (I): Client 24
 (I): List of Capability Objects 25
 (O): List of Capability Objects that are supported by the KM server 26

6.4 Get Server Capabilities 27

 (I): Client 28
 (O): List of Capability Objects. 29

Deleted: PEP

23
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6.5 Create/Generate Key 1

Scope: KMCS, KM Console 2

6.5.1 Overview 3

A client upon authentication invokes the Generate key operation to generate a new key by passing in the 4
KeyTemplateID and/or DataSet context in which this key would be used so that the KM can apply the appropriate 5
policies. 6

6.5.2 Input / Output / Error 7

 (I): Client 8
 (I) CU_ID or EndPoint’s CIM Object - Identifier of final destination for the key. 9
 (I): List of Dataset objects. 10
 (O): Key (including unique So_Guid) 11
 (E): … 12

6.6 Store Key 13

Scope: KMCS, KM Console 14

6.6.1 Overview 15

Keys that are generated at the client can be stored in the KM server by invoking its store functionality. 16

6.6.2 Input / Output / Error 17

(I): Client 18
(I): List of Dataset objects. 19
(I) CU_ID or EndPoint’s CIM Object - Identifier of final destination for the key. 20
(O): Key_SO_GUID 21
(I) Friendly_Name 22
(E)… 23

Comment [MM6]: note that any
object can belong to multiple realms. it is
a many to many relationship. Template
policies are for inheritance and can be
overridden by an object specific policy.

Deleted: PEP

Deleted: PEP

24
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6.7 Get Key 1

6.7.1 Overview 2

Clients invoke the get key operation to fetch keys from the KM server. They may invoke the query based on either a 3
Key ID or FriendlyName, and/or based on the Dataset attributes. When querying based on dataset attributes, the KM 4
returns a key based on the application template and the policies that govern the key and the client. 5

6.7.2 Input / Output / Error 6

(I): Client 7
(I) CU 8
(I): List of Dataset objects. 9
(O): Key 10
(E): … 11

6.8 Push Audit Message 12

6.8.1 Overview 13

This operation is intended to be used by ‘super’ clients that maintain local caches of keys and ship them out to 14
cryptographic units on demand. This will ensure that the KM Server can be a central audit repository for any/all 15
accesses to keys. 16

Discussion: Marcil: I think this should be broader than presented, which only covers one type of message. For 17
example, an encrypting drive may be configured locally to unlock the drive and therefore no longer need a key. Or 18
an existing key may be used for another device. It would be good to have an audit message that reflects these. 19
Audit messages should also be batchable and uploaded in a file. 20

6.8.2 Input / Output / Error 21

(I): Client or CU 22
(I): Key_SO_GUID 23
(I): Message (Optional) 24
(O): Boolean – SUCCESS/FAILURE. 25
(E): … 26

6.9 Get Random Bytes 27

6.9.1 Input / Output / Error 28

 (I): Client (question: why?) 29
 (I): numbers of bytes desired 30
 (O) Base64 Encoded bytes 31

Deleted: PEP

Deleted: PEP

25
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

6.10 GetStatus --KMS_Client Service (optional) -- [Server initiated] 1

Server asking client for status. 2

Discussion: To aid KMS Administrators to provide key management for endpoints, we will need some mechanism 3
to gather status on endpoints, including operating mode, Keys in use, status of any rekeying, We could try and 4
define some predetermined status types or just allow these to come back with what the KMS Client and CU can 5
provide. 6

Discussion: This probably matches the concepts of some existing WSMAN service. 7

 (I): Target of Interest Type: filter expression 8
 (I) Locale – requested language for any NVPs 9
 (O) Locale – language used for NVPs 10
 (O) Endpoint + NVPs 11

6.11 UpdatePending --KMS_Client Service (optional) [Server initiated] 12

Server notifying client of relevant updates. 13

KMS_Clients expose this service. KMS Servers will repeat this service until the client acknowledges currency by 14
virtue of matching UpdateVersioningTokens. Note, these tokens are used for sequencing between this service and 15
GetChangeList. A simple implementation of this would be for the KMS Server to maintain a VersioningToken to 16
represent the latest version of “Everything” for a KMS_Client or CU and a response to a GetUpdateList that returns 17
everything. 18

 (I): Type (Keys, AllKeys and custom types) 19
 (I) Scope: (KMS_Client or CU identifier) 20
 (I) UpdateVersioningTokens - KMS server sends its tokens representing the state to which the client (or 21

CU) needs to update. 22
 (O) UpdateVersioningTokens - KMS client sends its tokens representing the state it has received 23
 24

6.12 GetUpdateList --KMS_Server Service [Client initiated] 25

Discussion: can this be done with a WS-ENUMERATE service? 26

 (I): Type: (Keys, AllKeys and custom types) 27
 (I) Scope: (KMS_Client or CU identifier) 28
 (I) UpdateVersioning Tokens (zero values will result in all requested instances of requested type) 29
 (O) requested objects 30
 (O) New UpdateVersioningTokens 31
 32

7. Key Management Transport 33

[Supported transport protocols go here] 34

Comment [MM7]: this is a
contentious point. Worthy of further
discussion.

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

Deleted: PEP

26
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

8. Key Management Messaging 1

[This is an additional section that I am proposing we add to help complete the standard. It does not currently exist 2
in Draft 1.] 3
[This section would contain normative information for the XML and/or TLV formats we decide to support] 4
 5

27
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Annex A 1

(informative) 2

Bibliography 3

[List all bibliographic material here] 4
 5

28
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Annex B (informative) 1

Example Use Cases 2

[Objects & operations or use cases should add the appropriate use cases here] 3
 4

29
Copyright © <year> IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Annex C (informative) 1

XML and TLV Schema Definitions 2

C.1 XML Schema 3

[Additional messaging group information for selected XML syntax goes here] 4

C.2 TLV Schema 5

[Additional messaging group information for selected TLV schema goes here] 6
 7

 8

