
Mapping OASIS KMIP to an XML WSDL for IEEE P1619.3

Matt Ball, Sun Microsystems
Version 2, February 15, 2010

Overview
This document proposes a method to map OASIS KMIP (Key Management Interoperability Protocol) onto an XML
WSDL (Web Services Description Language) schema. This document assumes that the reader is familiar with the
OASIS KMIP specification, XML WSDL, XML XSD, and XML SOAP.

The general strategy is to use XML SOAP to map KMIP onto a WSDL with Document/Literal encoding so that it is
possible to validate the WSDL against the WS-I Basic Profile 1.0.

Proposed WSDL
The proposed WSDL for KMIP-P1619.3 mapping is located at http://schemas.siswg.org/P1619-3-KMIP.wsdl

Data type mapping

Primitive data types

Table 1 shows a proposed mapping of primitive OASIS KMIP data types to their corresponding XSD
types and recommended C++ programming language types. Note that the C++ data types are not
normative, but are rather informational, and may help programmers to better understand the implications
of these mappings.

Table 1: KMIP Primitive Type Mapping to XSD

KMIP Primitive Type XML XSD type Proposed C++ type

Integer xsd:int int

Long Integer xsd:long long long int

Big Integer xsd:base64Binary struct { unsigned char *ptr; int size; }

Enumeration xsd:string / xsd:enumeration enum { ... }

Boolean xsd:boolean bool (or char)

Text String xsd:string wchar_t * (or char *)

Byte String xsd:base64Binary struct { unsigned char *ptr; int size; }

Date-Time xsd:dateTime time_t (assuming a 64-bit system)

Interval xsd:duration char * or long long int

Complex data types
In addition to primitive data types, KMIP also supports complex data types, both explicit and implicit. Table 2
shows the mapping of KMIP complex types (both explicit and implicit) onto XML and C++.

Table 2: KMIP Complex Type Mapping to XML

KMIP Complex Type XML WSDL Proposed C++ Format

Structure <complexType><sequence> struct { ... }

(implied) Array <complexType name="ArrayOf...">
<sequence> <element ...
maxOccurs="unbounded">

struct { struct {} *ptr; int size }

(implied) Union <complexType><choice> union { ... }

The KMIP specification implies the Array type when allowing an element to appear more than once. Encoding this
in XML typically requires creating an implied ComplexType to encapsulate the array.

The KMIP specification implies a Union type when it states that the encoding "Varies". For example, the KMIP
Attribute Value (see KMIP 2.1.1) has an encoding that 'Varies'. This can be handled in XML using a 'choice', or in
C using a 'union' with an index that enumerates which encoding was chosen.

Naming strategy

Namespace
The proposed XML namespace is 'P1619-3-KMIP', to show that this is the IEEE P1619.3 encoding for the OASIS
KMIP protocol.

Element naming
The general strategy for creating XML names from the KMIP specification is to directly use the names as-is with
the spaces removed. Other characters not allowed in XML (for example ':') are either removed or replaced with a
hyphen ('-').

For (implied) Arrays, the WSDL uses the convention of prefixing the type with "ArrayOf...", and this naming
convention appends the word "List" to the end of the name. Example:

WSDL:

 <complexType name="ArrayOfUniqueIdentifier">
 <sequence>
 <element name="item" type="P1619-3-KMIP:UniqueIdentifier" minOccurs="0"
maxOccurs="unbounded" nillable="true"/>
 </sequence>
 </complexType>

 <element name="DeriveKey">
 <complexType>
 <sequence>
 <element name="ObjectType" type="P1619-3-KMIP:ObjectType" minOccurs="1"
maxOccurs="1"/>
 <element name="UniqueIdentifierList" type="P1619-3-KMIP:ArrayOfUniqueIdentifier"
minOccurs="1" maxOccurs="1" nillable="true"/>
 <element name="DerivationMethod" type="P1619-3-KMIP:DerivationMethod" minOccurs="1"
maxOccurs="1"/>
 <element name="DerivationParameters" type="P1619-3-KMIP:DerivationParameters"
minOccurs="1" maxOccurs="1"/>
 <element name="TemplateAttribute" type="P1619-3-KMIP:TemplateAttribute"
minOccurs="1" maxOccurs="1"/>
 </sequence>
 </complexType>
 </element>

Encoding Differences
When using XML/SOAP, there is a functional model that is different than that of KMIP. In particular, SOAP has a
basic method for encoding procedures and the corresponding responses that differs from the KMIP method of
wrapping each command and response with a message envelope. While it is possible to emulate this using
SOAP, it forces everything to be interpreted as a single command and removes the benefits that XML parser
generators provide in performing parameter type-checking.

In practice, this will serve to simplify things on both the server and client side.

Caveats
The proposed XML encoding has the following caveats as compared to the KMIP binary format:

• No standard KMIP header (this is replaced by a SOAP header that has slightly different features)

• Batching not supported

• Asynchronous commands not supported

	Overview
	Proposed WSDL

	Data type mapping
	Primitive data types
	Complex data types

	Naming strategy
	Namespace
	Element naming

	Encoding Differences
	Caveats

